Carbohydrate Polymers

نویسندگان

  • Chieu D. Tran
  • Franja Prosenc
  • Mladen Franko
  • Gerald Benzi
چکیده

Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm+Cl−), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm+Cl−] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest !-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL + KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL + wool], [CEL + hair] and [CEL + feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL + feather] has, expectedly, the strongest mechanical property because feather has the lowest content of !-helix. Conversely, [CEL + wool] composite has the weakest mechanical strength because wool has the highest !-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL + KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoencapsulation and delivery of curcumin using some carbohydrate based systems: A review

Nanoencapsulation is commonly used to improve nutritional properties, rheological behavior and flavor profile of phytochemicals. The particles commonly utilized to encapsulate the functional ingredients are natural polymers such as polysaccharides and proteins. There is an ever-growing interest for use of polysaccharides to encapsulate hydrophobic phytochemicals like curcumin. Curcumin is a pol...

متن کامل

Carbohydrate-Based Polymers for Immune Modulation

Carbohydrates play prominent roles in immune surveillance and response to infection. Multivalency, molecular weight control, and molecular architecture control are properties that polymer science is well suited to address. Each of these properties has been demonstrated to impact the biological interaction of carbohydrate-bearing chains with their binding partners. This viewpoint highlights synt...

متن کامل

Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions.

In this work it is demonstrated, for the first time, that it is feasible to develop, using the electrospraying technique, low molecular weight carbohydrate-based capsule morphologies from aqueous solutions through the rational use of surfactants. Two different low molecular weight carbohydrate polymers were used, a maltodextrin and a commercial resistant starch. The solution properties and subs...

متن کامل

Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein.

Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of ...

متن کامل

Detection of bacteria with carbohydrate-functionalized fluorescent polymers.

Many pathogens that infect humans use cell surface carbohydrates as receptors to facilitate cell-cell adhesion. The hallmark of these interactions is their multivalency, or the simultaneous occurrence of multiple interactions. We have used a carbohydrate-functionalized fluorescent polymer, which displays many carbohydrate ligands on a single polymer chain, to allow for multivalent detection of ...

متن کامل

Synthesis of galactofuranose-based acceptor substrates for the study of the carbohydrate polymerase GlfT2.

Despite the prevalence and importance of carbohydrate polymers, the molecular details of their biosynthesis remain elusive. Many enzymes responsible for the synthesis of carbohydrate polymers require a 'primer' or 'initiator' carbohydrate sequence. One example of such an enzyme is the mycobacterial galactofuranosyltransferase GlfT2 (Rv3808c), which generates an essential cell wall building bloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016